Dynamic Pricing and e-commerce

1. Introduction

Uniform market price: in perfect competition
Dynamic Pricing: under imperfect competition non-uniform price
Price discrimination (PD)
Market segmentation
IT and the Internet allows dynamic pricing

1. Introduction

Amazon.com
0.6 M customers for particular book
0.1 M are high WTP $=\$ 50$
0.5 M are low WTP $=\$ 10$

Three Pricing strategies
(i) Charge $\mathrm{P}=\$ 10$
(ii) Charge $\mathrm{P}=\$ 50$
(iii) Discriminate: high WTP \$50, low WTP \$10

Revenue in
(i) $=\$ 10 * 0.6 \mathrm{M}=\$ 6 \mathrm{M}$
(ii) $=\$ 50 * 0.1 \mathrm{M}=\$ 5 \mathrm{M}$
(iii) $=\$ 10 * 0.5 \mathrm{M}+\$ 50 * 0.1 \mathrm{M}=\$ 10 \mathrm{M}$

Road map

Theory of PD
IT and the Internet
Amazon.com and PD
Versioning information goods: $3^{\text {rd }}$ degree PD
Goldilocks pricing
Welfare and Policy

2. Theory of PD

Selling units of output to different customers at different prices
(i) Fairness and customer protection
(ii) $1^{\text {st }}$ degree PD : perfect PD , personalized pricing
(iii) $2^{\text {nd }}$ degree PD: price-quantity package
(iv) $3^{\text {rd }}$ degree PD: group pricing, versioning
(v) Competition
(vi) Summary

2. Theory of PD

(i) Fairness and Consumer protection

Robinson-Patman Act (Anti-chain-store Act) 1936 PD is not illegal in US

Unless it lessens competition
Price difference due to production and delivery costs

PD improves W

2. Theory of PD - $1^{\text {st }}$ degree PD

(ii) $1^{\text {st }}$ degree PD

Every point on the demand curve is the reservation price
Sell at reservation price $=$ maximum price of one's WTP

Monopoly
zero FCs and constant MC

2. Theory of PD - $1^{\text {st }}$ degree PD

2. Theory of PD - $1^{\text {st }}$ degree PD

	Monopoly Pricing	Perfect Competition	$1^{\text {st }}$ degree PD
CS			
PS			
DWL			
W			

2. Theory of PD - $1^{\text {st }}$ degree PD

Policy of $1^{\text {st }}$ degree PD
Perfect PD maximizes W (Producers extracts every CS)
High-WTP consumers worst off (loose CS relative to the Low-WTP consumers)
Low-WTP consumers receive the good (come into the market)

2. Theory of PD - $1^{\text {st }}$ degree PD

Applications
Sues cannel, used-car markets Assumptions

1. Firm needs some market power
2. Detailed consumer's information of WTP
3. No resale (resale goes to uniform price)

2. Theory of PD - $2^{\text {nd }}$ degree PD

(iii) $2^{\text {nd }}$ degree PD

Charge different prices for different units of output
Monopoly
same D-curve for each customer

2. Theory of PD - $2^{\text {nd }}$ degree PD

Declining Block Pricing: $\$ 70$ for the 1st 20 units, $\$ 50$ for the 2 nd 20 units

2. Theory of PD - $2^{\text {nd }}$ degree PD

Uniform monopoly price

2. Theory of PD - $2^{\text {nd }}$ degree PD

	Monopoly Pricing	Perfect Competition	$2^{\text {nd }}$ degree PD
CS			
PS			
DWL			
W			

2. Theory of PD - $2^{\text {nd }}$ degree PD

W increased compared to the monopoly price, if demand is uniform over the quantity level Applications
Price-Quantity package
Public utility: electricity, international call
Air-tickets $1^{\text {st }}$ class: high-WTP
$2^{\text {nd }}$ class: low-WTP

2. Theory of PD - $3^{\text {rd }}$ degree PD

(iv) $3^{\text {rd }}$ degree $\mathrm{PD}=$ Group pricing

Units of output are sold to different groups for different price
Senior citizens and students
Monopoly sells AER online
Two demand curves: Economists and Students
P lower for more elastic group

2. Theory of PD - $3^{\text {rd }}$ degree PD

$\mathrm{MR}_{\mathrm{S}}=\mathrm{MR}_{\mathrm{E}}=\mathrm{MC}$ maximizes the profit (Why?)

2. Theory of PD - $3^{\text {rd }}$ degree PD

$$
\begin{aligned}
& \frac{\mathrm{MR}}{\mathrm{P}}=\left(1+\frac{1}{\eta}\right) \quad \eta: \text { elasticity } \\
& \mathrm{MR}=\mathrm{P}\left(1+\frac{1}{\eta}\right) \\
& \mathrm{P}_{\mathrm{S}}\left(1+1 / \eta_{\mathrm{S}}\right)=\mathrm{P}_{\mathrm{E}}\left(1+1 / \eta_{\mathrm{E}}\right) \\
& \frac{\mathrm{P}_{\mathrm{E}}}{\mathrm{P}_{\mathrm{S}}}=\frac{\frac{1}{\eta_{\mathrm{S}}}+1}{\frac{1}{\eta_{\mathrm{E}}}+1} \quad \eta_{\mathrm{S}} \downarrow, \quad \mathrm{P}_{\mathrm{E}} / \mathrm{P}_{\mathrm{S}} \uparrow
\end{aligned}
$$

2. Theory of PD - $3^{\text {rd }}$ degree PD

$\uparrow \mathrm{W}$ as $3^{\text {rd }}$ degree PD with more groups
$\rightarrow 1^{\text {st }}$ degree PD
Firms \uparrow profits, consumers \downarrow CS
Low-WTP consumers receive goods

2. Theory of PD

(v) Competition

On-line and off-line competition
$1{ }^{\text {st }}$ degree PD allows competition and differentiation
Enhanced surplus extraction
Intensified competition effect: more firms in the market (Costco/E-mart/Department store)
Consumer heterogeneity: target consumer groups increases
${ }^{\uparrow}$ Competition effect with homogeneous tastes

2. Theory of PD

(vi) Summary

Price discrimination \uparrow firm's profits
t-costs prevent perfect ($1^{\text {st }}$ degree) PD, practice imperfect PD based on quality/groups
PD \downarrow DWL and $\uparrow \mathrm{q}$ to low-WTP customers
IT and the Internet lower t -costs

2. Theory of PD

Q_{0} : w/o transaction cost
Q_{1} : with transaction cost, t : $\mathrm{P}_{\mathrm{s}}+\mathrm{t}=\mathrm{P}_{\mathrm{d}}$

3. IT, Dynamic Pricing, and Internet

IT reduces t-costs
(i) Menu costs
(ii) Consumer information
(iii) Market experimentation

3. IT, Dynamic Pricing, and Internet

(i) Menu costs

Cost of changing prices and menus
Cost to e-tailers is lower than the traditional market Books.com

Separate out price-sensitive customers and price-insensitive customers

3. IT, Dynamic Pricing, and Internet

(ii) Consumer Information

Information indicates higher WTP
PD algorithm
Hardcover book customer, $\uparrow \mathrm{P}$
Return visitor, $\downarrow \mathrm{P}$
More purchases lead to more information

3. IT, Dynamic Pricing, and Internet

(iii) Market experimentation

Online market experimentation
More price revising
Elimination of menu costs

4. Amazon.com

Over 70M active accounts worldwide (2007)
\$14B net sales, \$600M operating income (2007)
Collect detailed information
Price discrimination (9/2000)?

Demand curve estimation

4. Amazon.com

(i) Price discrimination

Prices vary geographically
Transport, warehousing costs
Region-specific taxes, and other costs
Local competition
Search costs
Demand curve estimation
Business pricing with η (elasticity)

4. Amazon.com

(ii) What type of PD?

E-commerce analysts say PD
What kind of PD?
Estimate WTP from account information
Name
Area of residence
Past buying
Form of payment
Form of shipment

4. Amazon.com

Group Pricing
Repeat customers less likely to search familiarity with web site familiar with payment method Perception of faster shipping
Lower η for Repeat (R) customers
Higher η for $1^{\text {st }}$ time (F) customers

4. Amazon.com

Ontario.com (a fictitious firm)
Uniform pricing
Can't distinguish between R and F
Market demand curve

$$
\mathrm{P}=15, \mathrm{Q}=10 \mathrm{~K}, \pi=\$ 50,000
$$

4. Amazon.com

$$
\pi=(15-10) * 10,000=\$ 50,000
$$

4. Amazon.com

Price Discrimination between R and F

$$
\begin{array}{cc}
\pi_{\mathrm{R}}=\$ 35,000 & \pi_{\mathrm{F}}=\$ 24,500 \\
\pi=\pi_{\mathrm{R}}+\pi_{\mathrm{F}}=59,500>50,000 \text { (uniform pricing) }
\end{array}
$$

4. Amazon.com

PD?

Probably not illegal
Recourse to consumers
Hide identity (use e-cash)
Disable personal identifiers
Resell in the other market (arbitrage)
Take your business somewhere else

5. Versioning Information Goods

Pricing-by-identity
$1^{\text {st }}$ and $2^{\text {nd }}$ degree $P D$
Requires consumer profiles: expensive
Offer a menu of versions to consumers
Allow self-selection: cost effective
Don't need expensive market data

5. Versioning Information Goods

(i) Self-selection

High and low-quality version
Allow self-selection
Observe how market splits
WTP revealed through selection

5. Versioning Information Goods

(ii) Examples

Sell different qualities at different price
Receive higher price for almost same cost
Book publishers: hard, soft cover
Laser printer: 5pages/min, 10pages/min
PhotoDisc.com
Fedex
Over-night delivery
$2^{\text {nd }}$ delivery

5. Versioning Information Goods

(iii) Versioning Information

Seller knows rough distribution of WTP
Don't know individual WTP
Set price according to quality of different version
Offer several versions and prices

5. Versioning Information Goods

StockQuotes.com (a fictitious firm)
Subscribers normalized to one
Low-WTP (type1): r
High-WTP (type2): 1-r
Prices are P_{1} and P_{2}

5. Versioning Information Goods

Perfect PD

Producer can perfectly identify types of consumer
MC of incremental quality $=0$
Price the good to extract entire CS
Choose quality at $\mathrm{x}_{1}{ }^{0}$:

$$
\mathrm{P}_{1}=\mathrm{A}, \mathrm{CS}=0
$$

Choose quality at $\mathrm{x}_{2}{ }^{0}$:

$$
\mathrm{P}_{2}=\mathrm{A}+\mathrm{B}+\mathrm{C}, \mathrm{CS}=0
$$

If PD not feasible, the producer choose large π

$$
\begin{aligned}
& \text { at } \mathrm{x}_{1}{ }^{0} \text { with } \mathrm{P}_{1}: \pi=\mathrm{rA}+(1-\mathrm{r}) \mathrm{A}=\mathrm{A} \\
& \text { at } \mathrm{x}_{2}{ }^{0} \text { with } \mathrm{P}_{2}: \pi=(1-\mathrm{r})(\mathrm{A}+\mathrm{B}+\mathrm{C})
\end{aligned}
$$

5. Versioning Information Goods

With self-selection (Versioning)

The ($\mathrm{P}_{1}, \mathrm{x}_{1}{ }^{0}$) does not satisfy the self selection constraints
The high WTP customer can choose ($\mathrm{P}_{1}, \mathrm{x}_{1}{ }^{0}$) intended for the low WTP customers and achieve CS = B
To induce self selection set $\mathrm{P}_{2}=\mathrm{A}+\mathrm{C}$ for $\mathrm{x}_{2}{ }^{0}$ with $\mathrm{CS}=\mathrm{B}$
This pricing is more profitable than $\left(\mathrm{P}_{1}, \mathrm{x}_{1}{ }^{0}\right)$

5. Versioning Information Goods

Versioning

5. Versioning Information Goods

Proposition

Reduce the low-quality until the marginal reduction in revenue from the low-WTP customers just equals the marginal increase in revenue from the high-WTP customers

6. Quality dimension, Design and Self-selection

(i) Quality dimensions for versioning

Delay
Resolution
User interface
Speed of software
Support
Comprehensiveness

6. Quality dimension, Design and Self-selection

(ii) Design for versioning

Max Profits by \downarrow quality at low-end
Design for high-end and degrade the low-end
Control the browser

6. Quality dimension, Design and Self-selection

(iii) Making self-selection work: keep quality difference

Cannibalization of high-value customer revenue
To prevent cannibalization
Reduce the price of the high-end product
Increase the quality of the low-end version
Effectively the same

7. Goldilocks Pricing

Successful versioning
(i) Online/offline versions
(ii) How many versions?
(iii) Goldilocks pricing

7. Goldilocks Pricing

(i) Online/offline versions

Is online a complement/Substitute to offline?
Substitute
Charge for it
Recover costs through advertising
Version it
Complement
Promote aggressively as possible
Encourage sales of offline

7. Goldilocks Pricing

(ii) How many versions?

Too many versions has costs
Analyze market:
professional/business/amateur user
Analyze product
How many dimensions
High/low-end for each dimension
Design high-end and degrade at the low-end
Low-end advertises for high-end: lock-in

7. Goldilocks Pricing

(iii) Goldilocks Pricing

Three versions is best
'Extremeness aversion' (Two versions) small/medium/large vs. medium/large/jumbe
Market experiments
Example: Technical Support for softwares
Low: no technical support
Medium: some support with payment
Jumbo: technical support w/o delay

8. Welfare and Policy

Is lowering quality bad?
Economists support versioning
Serve market that otherwise would not be served
Output effect > quality reduction effect
Antitrust policy (or Competitive policy)
Are new markets served?
Yes, versioning $\uparrow \mathrm{W}$

