Dynamic Pricing and e-commerce

1. Introduction

Uniform market price: in perfect competition Dynamic Pricing: under <u>imperfect competition</u> non-uniform price Price discrimination (PD) Market segmentation IT and the Internet allows dynamic pricing

1. Introduction

Amazon.com

0.6M customers for particular book 0.1M are high WTP = \$50 0.5M are low WTP = \$10 Three Pricing strategies (i) Charge P = \$10 (ii) Charge P = \$50 (iii) Discriminate: high WTP \$50, low WTP \$10 Revenue in (i) = \$10 * 0.6M = \$6M

(ii) =
$$$50 * 0.1M = $5M$$

(iii) = \$10 * 0.5M + \$50 * 0.1M = \$10M

Road map

Theory of PD IT and the Internet Amazon.com and PD Versioning information goods: 3rd degree PD Goldilocks pricing Welfare and Policy

2. Theory of PD

- Selling units of output to different customers at different prices
 - (i) Fairness and customer protection
 - (ii) 1st degree PD: perfect PD, personalized pricing
 - (iii) 2nd degree PD: price-quantity package
 - (iv) 3rd degree PD: group pricing, versioning
 - (v) Competition
 - (vi) Summary

2. Theory of PD

(i) Fairness and Consumer protection
Robinson-Patman Act (Anti-chain-store Act) 1936
PD is not illegal in US
Unless it lessens competition
Price difference due to production and delivery costs

PD improves W

2. Theory of PD - 1st degree PD

- (ii) 1st degree PD
- Every point on the demand curve is the reservation price
- Sell at **reservation price** = maximum price of one's WTP
- Monopoly
 - zero FCs and constant MC

2. Theory of PD - 1st degree PD

8

2. Theory of PD - 1st degree PD

	Monopoly	Perfect	1 st degree
	Pricing	Competition	PD
CS			
PS			
DWL			
W			

2. Theory of PD - 1st degree PD

Policy of 1st degree PD

Perfect PD maximizes W (Producers extracts every CS)

High-WTP consumers worst off (loose CS relative to the Low-WTP consumers)

Low-WTP consumers receive the good (come into the market)

2. Theory of PD - 1st degree PD

- Applications
 - Sues cannel, used-car markets
 - Assumptions
 - 1. Firm needs some market power
 - 2. Detailed consumer's information of WTP
 - 3. No resale (resale goes to uniform price)

2. Theory of PD - 2nd degree PD

(iii) 2nd degree PD
Charge different prices for different units of output
Monopoly

same D-curve for each customer

2. Theory of PD - 2nd degree PD

Declining Block Pricing: \$70 for the 1st 20 units, \$50 for the 2nd 20 units

2. Theory of PD - 2nd degree PD

Uniform monopoly price

2. Theory of PD - 2nd degree PD

	Monopoly	Perfect	2 nd degree
	Pricing	Competition	PD
CS			
PS			
DWL			
W			

2. Theory of PD – 2nd degree PD

W increased compared to the monopoly price, if demand is uniform over the quantity level Applications Price-Quantity package Public utility: electricity, international call Air-tickets 1st class: high-WTP

2nd class: low-WTP

2. Theory of PD - 3rd degree PD

(iv) 3rd degree PD = Group pricing
Units of output are sold to different groups for different price
Senior citizens and students
Monopoly sells AER online
Two demand curves: Economists and Students
P lower for more elastic group

2. Theory of PD - 3rd degree PD

 $MR_S = MR_E = MC$ maximizes the profit (Why?)

18

2. Theory of PD - 3rd degree PD

$$\frac{MR}{P} = (1 + \frac{1}{\eta}) \qquad \eta: \text{ elasticity}$$
$$MR = P(1 + \frac{1}{\eta})$$

$$P_{S}(1+1/\eta_{S}) = P_{E}(1+1/\eta_{E})$$
$$\frac{P_{E}}{P_{S}} = \frac{\frac{1}{\eta_{S}}+1}{\frac{1}{\eta_{E}}+1} \qquad \eta_{S} \downarrow, \quad P_{E}/P_{S} \uparrow$$

19

2. Theory of PD - 3rd degree PD

↑ W as 3rd degree PD with more groups
 → 1st degree PD
 Firms ↑ profits, consumers ↓ CS
 Low-WTP consumers receive goods

2. Theory of PD

- (v) Competition
- On-line and off-line competition
- 1st degree PD allows competition and differentiation Enhanced surplus extraction
 - Intensified competition effect: more firms in the market (Costco/E-mart/Department store)
- Consumer heterogeneity: target consumer groups increases
- [†]Competition effect with homogeneous tastes

2. Theory of PD

(vi) Summary

Price discrimination † firm's profits

t-costs prevent perfect (1st degree) PD,

practice imperfect PD based on quality/groups

PD \downarrow DWL and \uparrow q to low-WTP customers

IT and the Internet lower t-costs

2. Theory of PD

 Q_0 : w/o transaction cost Q_1 : with transaction cost, t: P_s + t = P_d

23

3. IT, Dynamic Pricing, and Internet

IT reduces t-costs

- (i) Menu costs
- (ii) Consumer information
- (iii) Market experimentation

3. IT, Dynamic Pricing, and Internet

(i) Menu costs

Cost of changing prices and menus

- Cost to e-tailers is lower than the traditional market
- Books.com
 - Separate out price-sensitive customers and price-insensitive customers

3. IT, Dynamic Pricing, and Internet

(ii) Consumer Information
Information indicates higher WTP
PD algorithm
Hardcover book customer, ↑P
Return visitor, ↓P
More purchases lead to more information

3. IT, Dynamic Pricing, and Internet

(iii) Market experimentationOnline market experimentationMore price revisingElimination of menu costs

4. Amazon.com

Over 70M active accounts worldwide (2007) \$14B net sales, \$600M operating income (2007) Collect detailed information Price discrimination (9/2000)? Demand curve estimation

4. Amazon.com

(i) Price discrimination Prices vary geographically Transport, warehousing costs Region-specific taxes, and other costs Local competition Search costs Demand curve estimation Business pricing with η (elasticity)

4. Amazon.com

(ii) What type of PD? E-commerce analysts say PD What kind of PD? Estimate WTP from account information Name Area of residence Past buying Form of payment Form of shipment

4. Amazon.com

Group Pricing Repeat customers less likely to search familiarity with web site familiar with payment method Perception of faster shipping Lower η for Repeat (R) customers Higher η for 1st time (F) customers

4. Amazon.com

Ontario.com (a fictitious firm) Uniform pricing Can't distinguish between R and F Market demand curve $P = 15, Q = 10K, \pi = $50,000$

4. Amazon.com

 $\pi = (15-10)*10,000 = $50,000$

4. Amazon.com

Price Discrimination between R and F

 $\pi = \pi_{\rm R} + \pi_{\rm F} = 59,500 > 50,000$ (uniform pricing)

4. Amazon.com

PD? Probably not illegal Recourse to consumers Hide identity (use e-cash) Disable personal identifiers Resell in the other market (arbitrage) Take your business somewhere else

5. Versioning Information Goods

Pricing-by-identity 1st and 2nd degree PD Requires consumer profiles: expensive Offer a menu of versions to consumers Allow self-selection: cost effective Don't need expensive market data

5. Versioning Information Goods

(i) Self-selectionHigh and low-quality versionAllow self-selectionObserve how market splitsWTP revealed through selection

5. Versioning Information Goods

(ii) Examples

Sell different qualities at different price Receive higher price for almost same cost Book publishers: hard, soft cover Laser printer: 5pages/min, 10pages/min

PhotoDisc.com

Fedex

- Over-night delivery
- 2nd delivery

5. Versioning Information Goods

(iii) Versioning InformationSeller knows rough distribution of WTPDon't know individual WTPSet price according to quality of different versionOffer several versions and prices

5. Versioning Information Goods

StockQuotes.com (a fictitious firm) Subscribers normalized to one Low-WTP (type1): r High-WTP (type2): 1-r Prices are P_1 and P_2

5. Versioning Information Goods

Perfect PD

Producer can perfectly identify types of consumer MC of incremental quality = 0WTP Price the good to extract entire CS Choose quality at x_1^0 : Type2 $P_1 = A, CS = 0$ Choose quality at x_2^0 : Type $P_{2} = A + B + C, CS = 0$ X_{1}^{0} X_2^{0} Quality If PD not feasible, the producer choose large π at x_1^0 with $P_1 : \pi = rA + (1 - r)A = A$ at x_2^0 with $P_2 : \pi = (1-r)(A+B+C)$ 41

5. Versioning Information Goods

With self-selection (Versioning)

The (P_1, x_1^0) does not satisfy the self selection constraints The high WTP customer can choose (P_1, x_1^0) intended for the low WTP customers and achieve CS = B

To induce self selection set $P_2 = A+C$ for x_2^0 with CS = BThis pricing is more profitable than (P_1, x_1^0)

5. Versioning Information Goods

Versioning

43

5. Versioning Information Goods

Proposition

Reduce the low-quality until the marginal reduction in revenue from the low-WTP customers just equals the marginal increase in revenue from the high-WTP customers

6. Quality dimension, Design and Self-selection

(i) Quality dimensions for versioning
Delay
Resolution
User interface
Speed of software
Support
Comprehensiveness

6. Quality dimension, Design and Self-selection

(ii) Design for versioning Max Profits by \downarrow quality at low-end Design for high-end and degrade the low-end Control the browser

6. Quality dimension, Design and Self-selection

- (iii) Making self-selection work: keep quality difference
- Cannibalization of high-value customer revenue
- To prevent cannibalization
 - Reduce the price of the high-end product
 - Increase the quality of the low-end version
- Effectively the same

7. Goldilocks Pricing

Successful versioning

- (i) Online/offline versions
- (ii) How many versions?
- (iii) Goldilocks pricing

7. Goldilocks Pricing

(i) Online/offline versions
Is online a complement/Substitute to offline?
Substitute
Charge for it
Recover costs through advertising

Version it

Complement

Promote aggressively as possible Encourage sales of offline

7. Goldilocks Pricing

(ii) How many versions? Too many versions has costs Analyze market: professional/business/amateur user Analyze product How many dimensions High/low-end for each dimension Design high-end and degrade at the low-end Low-end advertises for high-end: lock-in

7. Goldilocks Pricing

(iii) Goldilocks Pricing Three versions is best 'Extremeness aversion' (Two versions) small/medium/large vs. medium/large/jumb Market experiments **Example:** Technical Support for softwares Low: no technical support Medium: some support with payment Jumbo: technical support w/o delay

8. Welfare and Policy

Is lowering quality bad? Economists support versioning Serve market that otherwise would not be served Output effect > quality reduction effect Antitrust policy (or Competitive policy) Are new markets served? Yes, versioning ↑ W